Increased seizure duration in mice lacking aquaporin-4 water channels.

نویسندگان

  • D K Binder
  • X Yao
  • A S Verkman
  • G T Manley
چکیده

Aquaporins are intrinsic membrane proteins involved in water transport in fluid-transporting tissues. In the brain, aquaporin-4 (AQP4) is expressed widely by glial cells, but its function is unclear. Extensive basic and clinical studies indicate that osmolarity affects seizure susceptibility, and in our previous studies we found that AQP4 -/- mice have an elevated seizure threshold in response to the chemoconvulsant pentylenetetrazol. In this study, we examined the seizure phenotype of AQP4 -/- mice in greater detail using in vivo electroencephalographic recording. AQP4 -/- mice were found to have dramatically longer stimulation-evoked seizures following hippocampal stimulation as well as a higher seizure threshold. These results implicate AQP4 in water and potassium regulation associated with neuronal activity and seizures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased seizure threshold in mice lacking aquaporin-4 water channels.

Mice deficient in the glial water channel aquaporin-4 (AQP4) show decreased cerebral edema and improved neurological outcome following water intoxication or ischemic challenge. In this report, we tested seizure susceptibility in AQP4 mice. AQP4 mice and wild-type controls were given the chemoconvulsant pentylenetetrazol (PTZ) and monitored for seizure activity. At 40 mg/kg PTZ, all wild-type mi...

متن کامل

Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels.

The glial water channel aquaporin-4 (AQP4) has been hypothesized to modulate water and potassium fluxes associated with neuronal activity. In this study, we examined the seizure phenotype of AQP4 -/- mice using in vivo electrical stimulation and electroencephalographic (EEG) recording. AQP4 -/- mice were found to have dramatically prolonged stimulation-evoked seizures after hippocampal stimulat...

متن کامل

The Isolated Perfused Heart and Its Pioneers

References 1. Chou, C. L, T. Ma, B. Yang, M. A. Knepper, and A. S. Verkman. Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Am. J. Physiol. 274 (Cell Physiol. 43): C549–C554, 1998. 2. Ma, T., B. Yang, A. Gillespie, E. J. Carlson, C. J. Epstein, and A. S. Verkman. Severely impaired urinary concentrating ability in transgenic mice lacking ...

متن کامل

Protective role of aquaporin-4 water channels after contusion spinal cord injury.

OBJECTIVE Spinal cord injury (SCI) is accompanied by disruption of the blood-spinal cord barrier and subsequent extravasation of fluid and proteins, which results in edema (increased water content) at the site of injury. However, the mechanisms that control edema and the extent to which edema impacts outcome after SCI are not well elucidated. METHODS Here, we examined the role of aquaporin-4 ...

متن کامل

New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice.

Aquaporin-4 (AQP4) is the major water channel in the CNS. Its expression at fluid-tissue barriers (blood-brain and brain-cerebrospinal fluid barriers) throughout the brain and spinal cord suggests a role in water transport under normal and pathological conditions. Phenotype studies of transgenic mice lacking AQP4 have provided evidence for a role of AQP4 in cerebral water balance and neural sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta neurochirurgica. Supplement

دوره 96  شماره 

صفحات  -

تاریخ انتشار 2006